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1.0. Management Summary
This report summarizes technical and programmatic accomplishments that have

occurred during the contract period of performance 16 August 2002 through 31 March
2004. This is the final submittal for the referenced contract; there have been two prior
interim progress reports submitted. The program has status has remained largely "on
track". Raytheon often encounters significant difficulties finding mutually acceptable
Terms and Conditions when subcontracting with universities and the negotiations with
Rice University were unusually time-consuming. Raytheon has used the experienced
gained from this rather frustrating experience to significantly improve the subcontracting
process with universities. Unfortunately, the delays experienced in placing the contracts
with our two subcontractors resulted in Raytheon having to request a no-cost extension to
the contract. Rice University (Rice) and Fast Mathematical Algorithms and Hardware
(FMAH) are such major components of the contract, that staffing at Raytheon was kept at
a reduced level while negotiations were completed. These problems have been resolved
and Raytheon now expects to complete the contract on time and on budget. FMAH has
completed their subcontract on time and on budget. The Rice contract, which is Fixed
Price, currently has some unexpected funds; they will finish on budget.

2.0. Personnel Associated/Supported:

2.1 Raytheon Missile Systems

Raytheon personnel that received significant funding support under the Integrated
Sensing and Processing for Missiles program included:

Dr. Harry A. Schmitt (PI)
Mr. Donald Waagen (Co-PI)
Dr. Nitesh Shah
Mr. David Zaugg
Mr. Wesley Dwelly
Mr. Craig Savage

2.2 Fast Mathematical Algorithms and Hardware
FMAH personnel that received significant funding support under the Integrated Sensing
and Processing for Missiles program included:

Professor Raphy Coifman
Dr. Paolo Barbano

2.3 Rice University

Rice personnel that received significant funding support under the Integrated Sensing and
Processing for Missiles program included:

Professor Rich Baraniuk
Professor Rob Nowak
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2.4 Significant Personnel Actions

There were no significant personnel actions or changes at Raytheon or FMAH during the
current period of performance. Professor Rob Nowak has left Rice University for the
University of Wisconsin-Madison; however, he remains active in the program.

3.0. Program Technical Summary
Advances in sensor technologies, computation devices, and algorithms have

created enormous opportunities for significant performance improvements on the modem
battlefield. Unfortunately, as information requirements grow, conventional network
processing techniques require ever-increasing bandwidth between sensors and processors,
as well as potentially exponentially complex methods for extracting information from the
data. To raise the quality of data and classification results, minimize computation, power
consumption, and cost, future systems will require that the sensing and computation be
jointly engineered. ISP is a philosophy/methodology that eliminates the traditional
separation between physical and algorithmic design. By leveraging our experience with
numerous sensing modalities, processing techniques, and data reduction networks, we
will develop ISP into an extensible and widely applicable paradigm. The improvements
we intend to demonstrate here are applicable in a general sense; however, this program
focused on distributed sensor networks and missile seeker systems.

3.1. Missile Applications of Embedded Monte-Carlo Algorithms

Sequential Monte Carlo methods, or particle filters, have been investigated for the
tracking of beam aspect targets, the tracking of targets obscured by altitude return, and
the tracking of targets using a passive sensor. Particle filters are Bayesian tracking filters
that are not constrained to the assumptions of Gaussian statistics and linearity. The
strengths of particle filters were exploited to improve upon conventional tracking
methods. These strengths can be exploited in all three of the previously mentioned
applications, yielding performance improvements.

Bearings-only tracking is widely used in the defense arena. Its value can be
exploited in systems using optical sensors and sonar, among others. Even though the
limited information available to a passive sensor complicates the tracking problem, the
advantages can be invaluable. Non-linearity and non-Gaussian prior statistics are among
the complications of bearings-only tracking. Several filters have been used to overcome
these obstacles, including multi-hypothesis extended Kalman filters (MHEKF), particle
filters, and extended Kalman filters (EKF). A MHEKF can only approximate the prior
distribution of a bearings-only tracking scenario and needs to be linearized. However, the
likelihood distribution maintained for each MHEKF hypothesis demonstrates significant
track memory and lends stability to the algorithm, potentially enhancing tracking
convergence. Also, the MHEKF is insensitive to outliers. These characteristics may yield
a smaller mean-squared error.

The initialization of a passive ranging tracking filter is critical. Due to the inherent
non-linearity of the problem and the non-Gaussian prior distribution, a greater extent of
the capabilities of particle filters can be exploited. Figure 1 illustrates the initialization
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support associated with particle and MHEKF approaches.
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Figure 1: Particle (a) and MHEKF (b) initialization

The EKF, while similar to the MHEKF, is more limited because of its necessary
Gaussian approximation of the prior distribution. Because of its simplicity, it may not be
as stable, but this simplicity may be a strength in terms of convergence speed. Indeed,
each of these the filters have a set of advantages and disadvantages. We compared these
approaches in different tracking scenarios to determine how their characteristics affect
their tracking performance in a diversity of situations. The tracking scenarios included:
tracking a stationary target, tracking a closing target, and tracking a crossing target. In the
first two cases, the sensor's flight path is predetermined, but in the third, the sensor is
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allowed to maneuver in an attempt to maximize tracking performance. For these
scenarios, we compare and contrast the acquisition time and mean-squared tracking error
performance characteristics of these three types of filters by means of Monte Carlo
simulation. These scenarios are illustrated in Figure 2.

Each scenario includes a single target and a single tracker with an angle sensor. A
Monte Carlo simulation is necessary because of the non-deterministic aspects of tracking,
including process noise, measurement noise, and the random nature of the particle filter
resampling algorithm.
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Figure 2: Stationary (a), Closing (b), and Crossing (c) target scenarios

We quantified the tracking ability of the three approaches for the scenarios
described. The metrics for comparison are the range error versus time and the root mean
squared (RMS) tracking error versus time. These results are the average of 100 Monte
Carlo runs. The stationary, closing, and crossing target tracking results are respectively
shown in Figures 3, 4, and 5.
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Figure 3: Average range (a) and RMS (b) error for closing target scenario
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Figure 5: Average range (a) and RMS (b) error for crossing target scenario

The stationary scenario is the easiest for all three filters, since the target is not
moving. The filters can use less process noise, so the estimate converges tightly on the
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target. The particle filter converges fastest in both range and RMS error, followed by the
EKF, and then the MHEKF. However, the MHEKF has the smallest steady state error,
followed by the EKF, and then the particle filter. The particle filter can be expected to be
faster than the EKF and MHEKF because the particle filter is not linearized, and it does
not have as much memory as the MHEKF. Because the particle filter is not linearized, it
does not introduce linearization errors as it iterates. The likelihood distribution
maintained for each MHEKF hypothesis demonstrates significant memory, but this
penalizes the filter when it comes to convergence speed.

The closing target scenario is much more challenging than the stationary target
case because the initial range is almost doubled, the target is moving, and the sensor is
closing on the target. Increasing the range and closing on the target reduces the angular
velocity of the sensor with respect to the target, making it less observable. Because the
target is moving, the tracker must use more process noise. However, as the sensor gets
closer to the target, the track starts to converge. Since this scenario requires the use of
more process noise in the filter, the track cannot converge as tightly.

The results are quite different for this scenario. Considering range error, the
particle filter converges the quickest at first, followed by the MHEKF, and then the EKF.
They all seem to overshoot significantly, and finally converge at the end. As they
converge at the end, the EKF is fastest, followed by the MHEKF, and finally the particle
filter. The RMS error plot shows them converging towards the end. Again, the EKF is
first, followed by the MHEKF, and finally the particle filter.

The crossing target scenario is also challenging, by considering the orientation of
the uncertainty volume with respect to the target velocity. Since the sensor measures
angle and has no a priori knowledge of target range, the uncertainty volume is long down
range and narrow in the cross range direction. Therefore a crossing target could quickly
leave the uncertainty volume causing a loss of track. For this reason, it is necessary to use
significant process noise. Again in this scenario, different filters perform better in
different time intervals. The range error and the RMS error show that the particle filter
converges more quickly at first, but is not able to converge as tightly as the EKF or
MHEKF. The ability of the sensor to adaptively maneuver improves tracking
performance because the sensor is measuring with maximum ARI.

The scenarios tested the filters in a different way. The particle filter initially
converges the fastest, but is then surpassed by the EKF and MHEKF in long term
tracking error. Of the EKF and MHEKF, the MHEKF converges more quickly in the
more difficult tracking scenarios, and maintains less steady-state error. These results
indicate that the particle filter would be advantageous for track initialization, but that the
EKF or MHEKF could be better for long-term tracking.

We are continuing investigating the extension of this technique to three other
compelling applications: distributed sensor network, radar tracking in a range denied
environment (jamming) and passive ranging for Ballistic Missile Defense.
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3.2. Entropic Processinf

Our goal is to develop techniques for characterizing (organizing, sorting,
indexing, querying, etc.) the information content of data residing in high-dimensional
spaces. In particular, we seek to enhance the process for jointly selecting features that
improve class separability, rather than relying on classical margin-distribution-based
feature analysis.

For characterizing high-dimensional joint data distributions, we are investigating
a graph-theoretic method for estimating divergence between two sets of features. This
method is based on recent work by Professor Alfred Hero et al., wherein it is shown that
a statistic determined from the length L of the minimal spanning tree (MST) of a graph
formed from n d-dimensional feature vectors asymptotically converges to the a-R6nyi
Entropy, H `(Z), of the feature set Z:

H.(Z)=lim L Za,,bI) .Ji , lnwj, aE (I)

Here, the data support is {ai,bi} with widths wj=bj-aj, and the second term on the RHS,
known as the 83 parameter, contains an evaluation of an MST on data sampled from a
Uniform Distribution. This direct method for estimating entropy can be applied to high-
dimensional data, where classical methods typically fail. Hero et al. define the a-Jensen
Entropy Difference, H (AB) = H ̀ (AUB) - 0.5(H O(A) + H a(B)), as a statistic to evaluate
the divergence between feature sets A and B. The individual a-R6nyi Entropy terms are
estimated using (1).
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Figure 6: Dependence of 03 on d and a, for data support [0,1 ]d.

Hero et al.'s prescription for determining a-R6nyi Entropy contains a parameter,
/8, that depends on the data support; 0 < a < 1; and the dimensionality, d. Hero et al. do
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not evaluate this parameter, choosing instead to calculate relative entropies among data
sets sharing common values for the data support, a and d. We have extended this result
by calculating values of the parameter /3 for 0 < a < 1 and d < 300, with fixed data
support wj-l, and we have shown that /3 is insensitive to the choice of a, and that 83
varies smoothly with d (Figure 6). We note that the parameter 83 is independent of the
scale length.

For fixed data support, we are using our implementation to study joint feature
distributions in a data set related to missile defense. In this data set, there are four classes:
Class 1 is the target, and Classes 2 through 4 are different types of clutter. A total of 256
features are generated via wavelet-packet technique using the Kolmogorov-Smimov test
statistic for feature selection and feature ranking. Features selected by this method are
highly correlated within class. We are investigating the use of AHa as a technique to rank
features via a joint density rather than the current marginal densities. In Figure 7, we
show a 2-feature example. Feature 1 is taken as the first feature of the pair, and the
second feature is varied over features 2 through 256. The features have already been
individually ranked in terms of their class separation efficacy, i.e., Feature I is the single
best feature for separating classes and Feature 256 is the single worst feature for
separating classes. We use n = 100 samples for each evaluation, and estimate AHa
pairwise over the classes.

1.6 _C1 C2 -C1 C3
_c1 C4 _c2 C3

_C2C N C3 C4

1.2

50.8
C
0
C

0.4 
al I

0.0
0 32 64 96 128 160 192 224 256

Second Feature

Figure 7: AHa for 4-Class Data
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The method of Hero et al. converges asymptotically. In practice, n > 500 samples
are required to closely approach the asymptotic value. We have demonstrated that given
only n - 500 samples, back-evolution by sub-sampling is a robust method for estimating
the asymptotic behavior of the entropy estimate. However, in many applications, the
number of available samples may be as low as n - 100. We are investigating an approach
to improve entropy estimates in this sample-starved regime. In this approach, we estimate
AH'0 (A,A) and AHa(BB). In the asymptotic case, both of these quantities should
converge to zero. In sample-starved situations, their deviation from zero should provide
some information for better estimating AHa(AB). Even with this possible improvement,
poor asymptotic convergence remains a problem. Another problem is estimating the true
data support {ai,bi} given only a small data sample.

With these issues in mind, we have identified other techniques for working with
high-dimensional data. These techniques include

* Friedman-Rafsky & extensions (multivariate two-sample test)

* Johnson-Lindenstrauss & extensions (low-dimensional subspace projection)
* ISOMAP (nonlinear dimensionality reduction)
• Locally Linear Embedding (nonlinear dimensionality reduction)
• Kernel-PCA (nonlinear dimensionality reduction)

Hero et al. have developed an approach that combines their MST-based work with
ISOMAP. Several of these approaches were investigated and our results will be
discussed.

We have also identified an MST-based approach for addressing the k-MST problem
(determining the shortest path connecting any k nodes in a graph). In one variant, the
MST is determined, and all edges not on the MST are removed from consideration. Then,
using each node in turn as the starting point, use a greedy algorithm to add the next (k-1)
closest nodes, and measure the k-length of the resulting edges. After all nodes have been
used as a starting node, select the minimum value of the found k-lengths. In a second
variant, using each node in turn as a starting point, use a greedy algorithm to develop the
MST. For each nodes MST growth, keep track of the intermediate k-lengths as the next-
closest nodes are added one by one. Finally, after all nodes have been used as a starting
node, select the smallest k-length found for each value of k, producing the k-MST for k =
2 ... n. We have started discussion with Professor Hero on the usefulness of these two
approaches to the k-MST.

3.3. Exploitation of Altemative Nonlinear Spaces:

The entropic approach of Hero et. al. provides a nonparametric approach for
estimation of joint feature utility for classification problems. Traditional approaches for
dimensionality reduction (e.g. Karhunen-Loeve, Principal Components, Independent
Component Analysis, ... ) are linear in nature. Unfortunately, these latter transformations
are suboptimal when the data resides in a nonlinear manifold of the original high
dimensional space. Approaches, like ISOMAP or Kernel-PCA, attempt to estimate and
extract the underlying nonlinear structure of the data.
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We investigated exploiting nonlinear, high dimensional functional mappings of
the feature/data for classification problems of interest. A tenet of kernel-based approaches
to classification, including support vector machines (SVMs), is that data that is not
linearly seperable in the original low-dimension feature space can often be linearly
separated in a high dimensional space, if a mapping is defined by an appropriate
nonlinear function. We investigated SVM's as an approach for separating low-
dimensional non-separable data sets to a high (possibly infinite) dimensional alternative
space. Formally, given a training set S=((xy ,y, )), composed of n d-
dimensional patterns x, E X and associated class labels y, E {-1,l}, a Support Vector
Machine is a linear function of the form

f(x)= Xa y K(x,x,)+ b. (2)
1-I

The variables a, are Lagrange multipliers, whose values are derived via maximizing
n I n n

L(a) = >a, _ -J:Xaiajy yjK(x,,xJ) (3)
i 1 2 i=-I j=l

n

subject to the constraints ,ay==O, a, >0 Vi =l,...,n.

A major hinderance to using SVMs is the need to determine the appropriate
values for the kernel hyperparameters. The kernel parameter is frequently selected on an
ad-hoc or experimental basis, in which an SVM is trained on various values of the
parameter until "good enough" results are obtained. Indeed, these parameters (e.g. or for
the Gaussian kernel) directly effect the concept of distance in the alternative space, and
have a critical performance impact. The appropriate selection of the kernel
hyperparameters directly impacts the generalization and classification efficacy of the
SVM. Figure 8 demonstrates the decision boundaries generated when the parameter
value is too small (8a) and too large (8b).
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Figure 8: Decision boundaries produced via poor selection of kernel parameter (over-fit
left; under-fit right)

13



Initial research developed an approach which can differentiate the conditions of
over-fitting and under-fitting of SVM training for Gaussian kernels (Figure 3) thereby
leading to a bounded range to search for an appropriate kernel parameter. A simple yet
effective approach for identification of over and under-fitting training conditions was
developed. This approach involved visualization of the distribution of margins values y,
defined by yk= f(xk), which is literally the projection of the training data onto the
hyperplane defined by the SVM in the alternative feature space. The probability density
distribution of the margins can be estimated and visualized by simple statistical modeling
techniques. We chose to use a Parzen kernel function as our density estimator. The class-
conditional margin distributions and associated SVM decision boundaries for a simple
checkerboard problem are shown in Figure 4. Note that the class-conditional densities
when the SVM Gaussian a value is too small are two delta functions (centered at ±1),
while the distributions overlap significantly when the a value is too large.

By examining the class-conditional margin distributions associated with the
training set mapped onto the vector defined by the SVM, an over-fit or under-fit condition
is readily declared and a range for the kernel width parameter, aY, can be identified.
Although the class data must be trained in this range to experimentally determine the
desired value for a, the initial search range can be significantly limited thereby decreasing
the number of iterations of SVM training required. Moreover, this method provides
insight into the separability of classes with the SVM.

Once a range for the search is established, we iterate the training in a fashion to
minimize the number of support vectors. In practice, we set our iterations to some
maximum level in order to limit the computational burden. Unfortunately, the SVM
iterative training required by this approach is computationally expensive, and a more
efficient automated approach for parameter selection was truly desired.

An alternative approach, developed by Cristianini et. al., defines the concept of
kernel alignment, which effectively is a measure of the correlation of class labels and the
Gram similarity matrix, and is formally defined as

A (= (K, ')F

V(K K)F(V"yy')F (4)

In (4), K is the Gram or similarity matrix, y is the vector of class labels and F denotes the
Frobenius inner product. This statistic was used by Christianini to estimate the utility of
particular kernels (and their parameters) and thereby drive kernel adaptation. This
simple, yet effective, statistic provides a measure for maximizing the within-class
similarity (clustering) induced via the kernel parameters, while penalizing between-class
similarity induced by the same kernel parameters.

An example of a Gram matrix computed for two-class checkerboard problem is
given in Figure 10. The quadrants on the diagonal represent within class similarities
while the anti-diagonal quadrants represent between-class similarities. Figure 11 displays
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Gram (similarity) matrices for a two-class checkerboard problem using a Gaussian kernel
function and four values of a. For the first plot, the value for a (0.1) is too small for this
data set resulting in comparable within and between class similarity. For the second case
(a = 0.4), the plot shows high within class similarity while the between class similarity is
much lower. For the last two plots of Figure 11, the value of a is too large and is
beginning to form large enough clusters that the all classes look "alike", resulting in
similar within-class and between-class values. A key concept with this approach is that
all class separability information is contained entirely in these similarity matrices
rendering iterative training of the SVM unnecessary.
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Within Between
Class Class
(Cl) (C2-Cl)

Between Within
Class Class

(Cl-C2) (C2)

Figure 10: Sample similarity matrix for the two-class checkerboard problem. White
indicates high similarity (-1) while black symbolizes low similarity (--0).

0M0.1 a-0.4

a 1 a=2

Figure 11: Similarity matrices for various kernel width selections

We noted that while this statistic is appropriate for true two class problems, in a
multi-class (1 class vs. m classes) training environment the alignment statistic as defined
does not differentiate between the desired within-class clustering of the class of interest
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and the within-class clustering of the m alternative classes (the world). Therefore, in the
multi-class case, the statistic can be biased when attempting to maximize the similarity of
the world data vectors.

Our research amended the alignment approach, which we called semi-alignment,
in a straightforward manner by applying a Frobenius inner product on a subset of the
similarity matrix rather than on the entire matrix. By using a subset of the matrix, we
remove the within class similarity of the world class from consideration. For multi-class
cases (greater that two classes), the statistic will no longer encourage the collection of
'other' classes to look "alike". Although this may decrease the sample support for a true
two-class case, it removes the induction of a false bias caused by the treatment of
disparate classes of the world as a single class. For a Gaussian kernel with the sigma
parameter, semi-alignment is defined as

SEK,(x,,xj)+ ZKo(x,,xj). (5)
yi =l=yI yi = lýyJ

In (5), we arbitrarily using the negative, and utilize a gradient descent approach to
expedite the search for the minimum function value.

Figure 12 illustrates the subsets of the matrix used to calculate the semi-alignment
test statistic for both two and four class cases. Class C I is shown as the class of interest
for both scenarios. In the two class case, C2 is the world while, in the four class case,
classes C2-C4 are grouped together as the world. Any of the four classes could have
been designated as the class of interest. As can be seen from the plots, the semi-
alignment method uses only the class of interest and the between class data from the
matrix.

Cl C2 Cl C2 C3 C4

02 4
WI c1

CE

Figure 12: Subset of similarity matrix (two-class on left, four-class on right) used for
semi-alignment Cross-hatched is the within-class, single hatched is the between-class
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Our semi-alignment kernel parameter optimization approach is summarized Figure 13.

Step 0: Initialize aY. Starting with a "small" value
of a, use a bracketing technique to find
appropriate minimum and maximum values
for a search.

Step 1: Calculate f(o) and Af. Search overdat

bracketed values found in step 0 for a
minimum function value using a gradient
descent approach.

Step 2: Iterate steps 0 - 1 for an estimate of the
"optimal" value of a for each class.

Figure 13: Kernel semi-alignment algorithm

3.3.1 Kernel Parameter Optimization on Simulated Data

To characterize the previously described approaches for kernel parameter
optimization, we used linearly nonseparable two-class and four-class classification
scenarios. Our first data set is a two-dimensional pattern space consisting of two classes
distributed in a 4x4 cell checkerboard pattern (the checkerboard problem). The second
simulated data set (the quadboard pattern), is a four class data set in an 8x8 cell pattern.
Sample data sets for each of these are shown in Figure 14.

.. ~~ 0 .

0 1 *d000 04 VS~ot

Figure 14: Sample checkerboard data set (left) and quadboard data set (right). 100
Samples are shown per cell.

Table 1 tabulates the association between the kernel parameter (af), the mean and
standard deviation of the number of support vectors in the associated SVM, and the
corresponding mean and standard deviation for the classification efficacy for the two-
class checkerboard problem. The iterative SVM training approach resulted in selecting ar
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= 0.4, where the minimum number of support vectors was obtained for the algorithm.
The classification efficacy was also near the maximum at this value. The last two rows of
the table show the results for &opt with the semi-alignment and alignment techniques.

The semi-alignment value of &opt as determined by our algorithm is in the range of

0.33< &opt <0.39 with a mean of 0.35 and standard deviation of 0.0099 for our random

data set trials for the two class case as shown. The alignment algorithm resulted in
essentially the same results. Note that the error rate for &opt for both alignment

approaches is in the neighborhood of the optimal value obtained by our iterative SVM
training. Remember, iterative SVM training was computationally several orders of
magnitude more expensive than alignment.

Table 1: Relationship between kernel parameter a, the SVM support vector (s.v.)
statistics, and PCC statistics for two class checkerboard problem.

Kernel a Value # s.v. mean # s.v. stdev PCC mean PCC stdev
0.05 316 2.1 81.6 0.03
0.10 279 5.1 90.4 0.87
0.20 147 5.2 91.3 0.83
0.30 101 5.1 91.6 0.89
0.40 95 5.7 92.3 0.86
0.50 99 6.1 92.4 0.89
0.60 113 6.4 91.9 0.95
0.70 135 6.7 90.8 1.10
1.0 228 6.6 79.4 1.58
2.0 298 3.4 56.0 2.14
4.0 302 3.0 51.2 0.03

semi-alignment
97 5.4 92.0 0.87

0.33• •r~!0.39 ____________

alignment
97 5.4 91.7 0.86

0.34<5 P'°t <00.39
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For the quadboard scenario, a boxplot of the results for the four-class quadboard
problem are shown in Figure 15 and the details of the results shown in Table 2. The
iterative training results in selection of 0.5 as the value for the kernel width, with an
average 305 support vectors and the highest classification efficacy. Semi-alignment
results for bopt obtained for our four class case were in the range 0.58< 8opt <0.67 with a
mean of 0.61, and a standard deviation of 0.015. For the alignment approach, the range
for the optimal value of a found over the trials varies more widely (0.75< aopt <1.37).

0 .7 - i _`

0.6

0.5

0.4

0.3-

0.2 -

0.1- lip, I. ••.•

0.050.1 0.2 0.3 0.4 0.5 0.60.61 0.7 1 2 4

a

Figure 15: Classification error with semi-alignment copt - 0.61 (0.58-- 0yopt <0.67) and pre-
specified values for a for the four class quadboard data.

Additionally, alignment suffers a significant degradation in classification efficacy.
Although the two class case results are identical for alignment and semi-alignment, we
see the benefit for using the semi-alignment approach in a multi-class setting.

We next investigate the effect of sample support on the two techniques, alignment
and semi-alignment, by considering results with reduced numbers of training samples.
Table 3 shows performance results with 32, 80, 160 and 320 training samples for the
checkerboard problem. The performance degrades as the sample support decreases, but
the results with the two techniques are essentially identical.

The results of the quadboard (four class case) are shown in Table 4. Note that our
semi-alignment approach consistently outperforms the alignment technique with this
multiple class case until the sample support has decreased to 1 sample per cell. At this
sample level, the semi-alignment approach results are similar to guessing (PCC = 26.5%),
while the alignment approach performs slightly better (PCC = 36.3%).
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Table 2: Relationship between kernel parameter ;, the SVM support vector (s.v.)
statistics and PCC statistics for four class quadboard problem.

Kernel a Value # s.v. mean # s.v. stdev PCC mean PCC stdev
0.05 1096 52.1 76.4 4.96
0.10 1134 9.1 88.8 0.47

0.20 655 7.7 89.8 0.46
0.30 418 6.0 90.5 0.50

0.40 324 6.1 91.1 0.48
0.50 305 6.2 91.3 0.49
0.60 313 6.4 90.8 0.51
0.70 350 7.7 89.2 0.56
1.0 438 9.8 79.8 0.44
2.0 644 2.5 69.4 1.28
4.0 960 142 50.1 9.85

semi-alignment
317 7.1 90.6 0.51

0.58• tropt <0.67
Alignment

511 24.4 83.5 1.54
0.75< •rft <•1.37 _

Table 3: Results for variations in the training sample support for the two class case.

Number of # s.v. # s.v. PCC PCC
training samples Techique mean stdev mean stdev

16 (1/cell) semi-alignment 16 0 51.0 0.04
16 (1/cell) alignment 16 0 50.7 0.03
32 (2/cell) semi-alignment 31.7 0.50 72.3 0.08
32 (2/cell) alignment 31.7 0.55 71.2 0.08
80 (5/cell) semi-alignment 54.0 3.6 83.2 1.8
80 (5/cell) alignment 53.9 3.6 83.1 1.8

160 (10/cell) semi-alignment 69.1 3.9 87.9 1.3
160 (10/cell) alignment 69.0 3.9 87.9 1.3
320 (20/cell) semi-alignment 97 5.4 92.0 0.87
320 (20/cell) alignment 97 5.4 91.7 0.86
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Table 4: Results for variations in the training sample support for the four class case

Number of # s.v. # s.v. PCC PCC
training Technique mean stdev mean stdev
samples men stema stdev

64 (1/cell) semi-alignment 64 0 26.5 0.04
64 (1/cell) alignment 32 0.2 36.3 0.05
128 (2/cell) semi-alignment 102 5.6 73.8 0.02
128 (2/cell) alignment 43 5.3 69.5 0.05
320 (5/cell) semi-alignment 130 3.6 81.9 0.01
320 (5/cell) alignment 67 4.7 76.7 0.03

640 (10/cell) semi-alignment 197 5.2 86.8 0.01
640 (10/cell) alignment 116 7.3 80.6 0.01
1280 (20/cell) semi-alignment 317 7.1 90.6 0.51
1280 (20/cell) alignment 511 24.4 83.5 1.54

3.3.2 Optimization of SVM kernel parameters on measured HRR data
So what is the benefit of these techniques with a measured data set? To answer

that question, we applied these techniques to a three-class (see Figure 16) measured High
Resolution Radar (HRR) data set and investigate selection of the Gaussian kernel width
parameter with semi-alignment and alignment. The data set used for testing the
algorithms consisted of 1417 inverse synthetic aperture (ISAR) images, of which 360
samples, 120 per class, were selected for training leaving for 1057 for testing. The
original ISAR images were converted to real-beam range profiles by means of frequency
domain processing for algorithm performance testing. The complex target signatures
were converted to real-valued magnitude profiles. The breakdown by class for the test
set is shown in Table 5. Detection of the target was pre-supposed, as this study was
geared towards evaluation of algorithmic performance.

Figure 16: Three class measured data set targets

Table 5: Number of test samples per class for measured data set

Class Number of samples
BTR 352
M2 349
ZIL 356
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Target pose information is not considered either in the training or testing phases,
resulting in classification representative of class differences across vehicle angular
aspects. Aspect angle variations present an important challenge in classification with
radar signal signatures since they exhibit a high degree of aspect angle dependence.
Desired classification schemes include those that exhibit little dependence on aspect
angle with respect to the separation of classes. With no knowledge of aspect angle, we
exploit signal characteristics that are common at all aspects thus forcing pose
independence. Examples of training and test range profiles for a target at the same pose
are shown in Figure 17.

Figure 17: Training (left) and test (right) signatures for a target

We utilized wavelet based features selected by forming empirical distribution
functions (EDFs) and implementing wavelet base selection via the Kolmogorov-Smirnov
(KS) test statistic. In an alternative approach to wavelet base selection, Saito et.aL use an
ASH estimate of the class probability density and implement the base selection via the
Kullback-Leibler (KL) test statistic. We modified Saito et. al.'s KL approach to allow
more flexibility in the score normalization process in a multiclass setting. To do this we
form a score matrix of class pair-wise scores and select an overall node score based on a
selection of a norm technique. We use the minimax and sup norms for this data set.

During previous empirical SVM training experiments with this data, we had
selected an 'optimal' value (determined by empirically trying a range of values) for the
SVM kernel parameter a = 0.5. We compared our previous classification results using
value with both classification results derived via alignment and semi-alignment selection
processes.

The results of this comparison are shown in Figures 18-21. These figures show a
comparison of the classification efficacy of the data set using the KS or KL wavelet
feature selection techniques and alignment and semi-alignment optimized values of for
the SVM kernel parameter (a), as well as our previously best baseline value of a = 0.5.
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Figures 18 and 19 show the results for the KS minimax and sup scoring
approaches. We see significant improvement in the performance by optimizing a with
both semi-alignment and alignment for both scoring methods. The results for the two
Gram-matrix optimization techniques diverge slightly with the semi-alignment exhibiting
superior performance at low dimensionality and alignment at higher dimensionality.
With the optimized SVM parameters, we continue to see the inherent data dependence
that must be considered when selecting the scoring approach. The performance of this
data set with the KL technique results in several interesting conclusions. Figures 20 and
21 show these results. Here we see the same trends that were found with the KS
approach. KL minimax and KL sup result in marked improvement over the baseline
value of ; with the KL techniques performing better than KS at higher dimensions and
KS performing better at lower dimensions.

Both the semi-alignment and alignment approaches provide better estimates for
the value of a as compared with training over a pre-specified range of values approach.
Recall that with both of these techniques, an optimal a value is determined for each class
while the baseline approach selects an overall value for a (all classes are restricted to a
single common value). The semi-alignment and alignment approaches performed
similarly with semi-alignment classification efficacy higher at lower dimensionality and
alignment better at higher dimensionality. We note that this is a three class case; a trial
with more classes most likely would begin to demonstrate differences in semi-alignment
and alignment due to the inherent grouping of dissimilar classes into a world class by
alignment. Indeed, we saw a false induction of similarity for the alignment approach
with the quadboard data case.

KS mi

0 .96"
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Figure 18: Comparison of classification results of a selection techniques of three class
measured data set with KS minimax scoring technique.
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Figure 19: Comparison of classification results of a selection techniques for three class
measured data set with KS sup scoring technique.
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Figure 20: Comparison of classification results of a selection techniques for three class
measured data set with KL minimax scoring technique.
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Figure 21: Comparison of classification results of a selection techniques for three class
measured data set with KL sup scoring technique.

These results indicate that alignment or semi-alignment techniques provide
efficacious and efficient to estimate kernel parameters on simulated and real data sets.
Our semi-alignment approach expected to be generally preferable to alignment for multi-
class data, as simulations demonstrated better classification efficacy.

3.4 Sensor Scheduling Against Swarms/TBM

As a preliminary study in sensor scheduling, we examined scheduling algorithms
against a number of targets converging on a central sensor. Such a scenario may
represent a number of engagements, including a ballistic missile attack or a number of
small, explosive-laden boats converging on an aircraft carrier.

3.4.1 Model Assumptions

The swarm scenario is modeled under the following assumptions.
* The system has a priori knowledge as to the number of objects, and their

approximate position and velocity vectors.
* All objects are moving in a straight line towards the sensor.
* The objects do not accelerate.
* Each object must be tracked before it is engaged by a weapon.
* Objects are "friendly" with a certain probability. Note that an object need not be

identified before weapon deployment; however, if a "friend" is engaged, a
penalty is paid.

* Sensor usage is divided into a series of "dwells" during which it may attempt to
sense N objects.

* The scenario is completely observed. That is, while it is not guaranteed that a
sensed object will be identified, its state of being identified or not is known. That
is, there are no false alarms. Objects can have the following states:
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1. X: The null state. This represents objects that have not been examined by
the sensor.

2. D: Detected. For objects that have been detected, but are not under track
or identified.

3. T & I: Tracked and identified. If not hostile, this is the terminal case.
4. T & -1: Tracked, not identified.
5. -T & I: Not tracked, but identified.
6. K: Killed. For objects after successful weapon deployment.

0 State transitions are handled via probability estimates. Each object, not the
sensor, has a set of probabilities centered about some nominal value. In this
manner, there is inhomogeneity between objects. If an object is not viewed by a
sensor, its state is left unchanged. Otherwise, state transitions are modeled by the
following mode-transition matrix.

Table 6: Mode-transition matrix for Sensor Scheduling against SWARM/TBM

Old \ New X D T&-I ~T&I T&I K
X I-Pd Pd(I-Qi) 0 PdQi 0 0

D 0 (I -Pd)+Pd(I-PtX I -Qi) PdPt(I-Qi) PdQi(I-Pt) PdPtQi 0

T&~I 0 0 1 -PdPi (-Pk) 0 PdPi (Pk)

0T&I 0 0 0 1-PdPt PdPt 0

T&I 0 0 0 0 I-Pk Pk

K 0 0 0 0 0 1

Note that for the transition T&-I-> K, in most cases, no weapon is deployed;
hence, the mode transition is conditioned upon weapon deployment. Weapon
deployment criteria are covered in more detail later. As for notation, it is assumed that
Q<= P, so that identification is more likely if an object is already under track.

3.4.2 Mathematical Formulation

Under the definitions and assumptions in section 3.4.1, we consider mathematical
approaches to scheduling solutions. Multi-Armed Bandits (MAB) are of particular
interest, due to the congruence of the assumptions made in our model and the
assumptions in the hypothesis of the MAB. Specifically,

1. Each bandit is governed by its own unknown state transition matrix.
2. The reward of examining an object is tied only to its current state.
3. States do not change when not examined.

A MAB is defined by trying to maximize discounted rewards over some time horizon.
For a policy, u(t), denoting which object(s) are examined at time t, the goal is:

arg maxZX)/Y u, (t) Fp(x -+ y)R(x -+ y)
U -0 x^wX
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where rewards are calculated according to the probability of state transition from a state x
to state y. The first summation occurs over a certain time horizon, T, according to a
discount factor, (gamma). The second considers which object(s) to consider, while the
final is the expected reward for transitions from state x to state y. The constants, ci, are
inversely proportional to the time it would take an object to reach the central sensor. In
our tests, ci = v/d, which, scaled to a dwell time, is l/ngo, or the number of expected
dwells to impact.

With those similarities in mind, there are also notable differences between a "classical"
MAB and the current problem. These include:

1. Exploitation premium: In the MAB case, the goal is to find a winning "bandit"
and play it as often as possible. Conversely, in our case, we want to move objects
to a terminal state and then never revisit them.

2. Probabilit estimation: Many MAB solution algorithms attempt to estimate the
state transition probabilities for estimating future rewards. Conversely, we do not
care about characterizing the state transition, so long as we can migrate the state
into a terminal state.

Fortunately, however, these two points may be overcome by constructing a suitable
reward function. Corresponding to the state transition matrix from above, we also
implement a reward for moving to each state.

Table 7: Reward matrix corresponding to state transition matrix

State Reward
X 0

D Rd

T&-I Rt

_T&I Ri

T&I Rc

K RhPh - Cf(1-Ph)

Where Rd < (Rt, Ri) < Rc. In the kill column, Rh is the reward for killing a hostile
target, Ph is the probability that the object is hostile (which, if the object is identified, is
either 0 or 1; otherwise, it is an a priori estimate), and Cf and Pf are the corresponding
cost and probability for friendly targets. Finally, if an object approaches the central
sensor to some lethal distance, a huge cost Cb >> {Cf, R.) is incurred. Note that the
rewards for moving to either T&-I or -T&I are not strictly comparable in the model.
This is somewhat offset by the lower probability of moving from D->(-T&I), so that
equal rewards for the two will naturally give preference to attempting to track before
identifying an object.

While the sensor progresses an object from state-to-state, weapon deployment is
independent of sensor function. For the simulation, one weapon may be deployed against
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any object, or no object. Because of the completely observed nature of the simulation, a
weapon will be deployed against an object when it has been tracked and identified, or if it
is within a dangerous range of the base. The completely observed nature is reflected in
the binary nature of Ph and Pf.

3.4.3 Simulations

Armed with selected values of all P, Q, R, and C values, as well as selected discount rate,
time horizon, and state information, scenes are randomly generated. Each scene is a
random selection of objects according to some number of objects, range and velocity
profiles, and all relevant P and Q values on each object, according to some distribution.
The primary purpose of the simulation is to evaluate multiple scheduling algorithms, not
evaluate system performance. Through basic simulation, the parameters of the scene
(e.g. range and velocity profile) are larger drivers of base survivability than which
algorithm is used. Analysis from the simulation is limited to lessons learned.

Time Horizon
The first realization was specific cases under which having a multi-epoch cost function
was more advantageous than a "greedy" algorithm. Consider a case where two objects in
the null state (state X), are 5 dwells from the base, and the sensor can only look at one
object at a time. Even under a benign case of all probabilities equal to one, one can reach
the following quandary:

Object\Dwell to go 5 4 3 2 1
1 X D T ?
2 XX X ?

With two dwells to go, for some set of rewards, a myopic cost function may choose to
examine target 1, looking to gain the reward for identification. However, doing so
neglects object 2, bringing it to only state D on the last dwell, resulting in the destruction
of the base.

Looking multiple steps ahead is not strictly necessary. One could tweak the reward
values, or change the constants to be inversely proportional to (ngo - 2), rather than ngo.
However, tweaking the rewards will be an ongoing problem, whereas using (ngo-2)
works for this case, but begins to fail for, say, three objects with ngo = 7. However,
looking ahead for three dwells, the algorithm sees a greatly increasing cost associated
with looking at object 2 from the base destruction. Hence, at this stage, a non-greedy
algorithm deploys a weapon at the first target, and tracks the second target before
lethality. That said, it is generally better for this situation to never arise in the first place,
where all objects have been killed before they get this close to the base.

Multiple Examinations Within a Dwell
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The policy, u, need not represent a single target of interest. Instead, the policy may be a
set of objects to be examined within a dwell. While allowing more objects within a dwell
to be examined increases the computational complexity, one can sort values according to
their ngo values, and only consider targets which have smaller ngo values in a certain
state. That is, if there are 20 objects in state X, because the probability and rewards for
state transition are all identical, their respective costs may be sorted by their ngo values.
A similar preordering may be done across all states, and can be further ordered according
to the state into which they would transition.

Multiple Sensor Types
In addition to incorporating multiple targets within a policy, if multiple sensor types are
present, the sensor utilized during a dwell can also be incorporated into the policy.
Following the work of Krishnamurthy, we consider two sensors, one which has good
tracking performance, while the other has good identification performance. Under such a
structure, under nominal conditions, the tracking sensor tracks N objects, at which time
the identification sensor tries to identify them all. Such scenarios vary under some
objects getting "close" to the base, but, otherwise, the progression is fairly predictable.

3.5. Waveform Design and Scheduling

3.5.1 FMAH Spectral Analysis Codes

We propose to investigate advanced waveform coding to suppress clutter
specifically for those situations where standard statistical techniques become unstable.
This section discusses a novel class of multiscale waveforms that possess a number of
properties that are applicable to the ISP problem. By using a completely new approach to
the classical theory of Walsh functions, we have developed a series of mathematical
algorithms for the design of coding sequences - Spectral Analysis Codes (SAC) - that
can be utilized specifically to detect and resolve spectral characteristics of target returns
buried in clutter and noise. SAC design techniques can be employed both as (1) signal
processing tools at the receiver as well as (2) in the generation of modulating sequences
for pulse-coded waveforms.

In order to separate the target from clutter return we are capable of producing a
family of SAC codes with spectral characteristics which can be customized to respond
"flatly" to the kind of clutter return determined by the application. Once the SAC family
is determined it can be used as a frequency analysis filter: we identify the target by
tracing any fluctuations from the statistically expected value in the Power Spectral
Density picture drawn by using our SAC family as a basis for the frequency transform. It
is important to note that this "clutter-customized" power-spectrum estimation can be
carried at several time-scales simultaneously. Furthermore, the approach suggested above
is based on algorithms whose complexity does not exceed the one of classical Fourier-
based peak-position estimation methods and has the additional advantage of being a more
flexible scheme to adapt to different clutter/target characteristics.
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SAC families of coding sequences can be modeled to suitably comply with a
variety of time-frequency analysis requirements. Both their Frequency response and
Power Spectral Density can be designed rather easily to be close to AWGN or highly
coherent, depending on the requirements imposed by the application. In addition, the
theoretical approach developed allows for the design of SAC code families that exhibit a
prescribed auto-and cross- correlation pattern. This is a valuable characteristic, enabling
the customization of coded waveforms to take advantage of the specific performance of
the transmitter/receiver. The characteristics of the auto-correlation path of the pulse-
compressed signals are adjustable, e.g., to the specific constraints dictated by the antenna
pattern under consideration. Furthermore, our techniques can be implemented in a
scenario where our target is illuminated by two or more radar signals in order to optimize
the cross-correlation performance. Another remarkable property of the new coded
waveforms is their potential to be operated at different scales whenever the need arises to
provide multiple resolution modes, e.g., in a ranging application. The availability of these
coded waveforms affords the possibility of improved clutter suppression.

We first consider the recursive formula defining Walsh functions:

W0(x) =

W2,, (x) =W,, (2x) + W,, (2x - 1)

W2.+, (x)= W, (2x) - W. (2x - 1)

And observe that the rule allowing movement from one scale to the next is in fact just
one out of the many possible unitary transformations that can be used to produce a family
of orthogonal functions with the same time-frequency characteristics at each scale. In a
more general approach we investigate a series of multi-scale transformations giving rise -
by means of the very same iterative Walsh scheme - to a whole class of new codes that
exhibit the same auto- and cross-correlation characteristics at each scale.

The modified scheme can be described as:

Co(x) = V

C 2. (x) = S, (C. (2x)) + T, (C. (2x - 1))

C2n+,(x) = S2(C, (2x))- T2(C. (2x - 1))

Where S's and T's are suitably "well-behaved" transformations and v is the initial vector
possessing the desired characteristics. In this context we chose S and T among those
transformations which will preserve the auto-correlation pattern. An example of this
procedure is given by the so-called Rudin-Shapiro sequence:
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Co(x) = 1

C2 , (x) = (1 - i) C. (2x) + (1 + i) C, (2x - 1)

C2n+l(x) = (1 + i) C, (2x) - (1 - i) C, (2x - 1)

It should be noted here that in the case of Walsh functions and Rudin-Shapiro
sequences the transformations S and T are multiplications by a (real or complex) number
of modulus one. This is not at all the only possible choice. The "good" choices for S and
T can be efficiently described by making use of tools arising from Harmonic Analysis, so
that the emphasis can be set on the space characteristics (auto- and cross-correlation,
number of phases, etc.) or the frequency content of the resulting coded signals. The
complexity of these algorithms is directly proportional to N Log(N) times the complexity
of the transformations S and T. The described procedure is illustrated in Figure 10: the
transformations S and T are "correlation-preserving" mappings, while the initial auto-
correlation pattern is designed by computer.
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Figure 22: Illustration of SAC Correlation Properties

The case where we want to model our multi-scale SAC codes to have a pre-
assigned frequency content is entirely similar. Our SAC family may, for example, be a
DFT-like set with a fixed number of phases. By convolving the sampled return of a Radar
receiver with an ad-hoc SAC sequence we can spot fluctuations in the Power Spectral
Density of the signal, possibly due to the presence of a target.
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3.5.2 Waveform Testing

Over the course of the contract, Raytheon has built up an Ka-Band radar test bed,
which can support multiple advanced proof of concept (POC) engineering tests. The
hardware for this set-up was procured using funds from the IR&D committed to this
contract. We have worked supported two ISP Phase I subcontractors FMAH and the
University of Melbourne (UniMelb). UniMelb has provided on set of binary waveforms,
the so-called Prometheus Orthonormal Set or PONS, while FMAH provided a family of
multiscale waveforms know as Spectral Analysis Codes or SAC.

3.5.2.1 Ka Band Radar: Facifity and Test Equipment
The data sets were collected from one of the radar test towers at the Raytheon

airport facilities. An Agilent E8267C Vector Signal Generator was used to replace the
Direct Digital Synthesizer and up-convertor, which greatly simplifies waveform
generation. Waveform I/Q data can be created from MATLAB and downloaded for
transmission. Any type of waveform can be generated within an 80 MHz Bandwidth.
The E8267C can be incorporated into a closed loop system as part of an integrated signal
processing demonstration to evaluate waveforms, processing and waveform selection.
The Agilent E8267C is limited to a 20GHz Frequency. Figure 23 shows the radar tower
test set-up, while Figure 24 shows examples of a few transmit waveforms.

Figure 23: RF Tower and Simulated Targets
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Figure 24: Sample Transmit Waveforms
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3.5.2.2 Bi Phase Waveform Test

Radar targets are typically smeared both in range and Doppler space. The amount of
smearing and its general shape depends critically on the waveform used as well as the
subsequent processing of the return. This effect is particularly important in high clutter
environments, where the clutter is smeared into regions of the range-Doppler space of
targets of significance. As a result detection and tracking of such targets can be severely
compromised. We investigated several new bi-phase waveforms that provide a greater
degree of control over ambiguities. The three bi-phase waveforms were: PONS, Walsh
and SAC. We generated ambiguity diagram for each tested waveform set and compared
their range side lobes and Doppler tolerance regions. Figure 25 shows the ambiguity
diagram for the three tested waveforms. Figure 26 show example test data plots of the
PONS and Walsh waveforms. Figure 27 shows example of SAC waveforms test data
with the target selection and null features.
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Figure 25: Waveforms Ambiguity Functions (PONS/Walsh/SAC)
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Figure 26: Test plots of PONS and Walsh waveforms
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Figure 27: SAC Waveform Set, Test Data
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4.0. Related Conference and Journal Articles
Over the duration of the contract, Raytheon has committed a significant amount of IR&D
funds related primarily to structured materials and advanced signal processing. This work
has resulted in a number of publications, which we also include here for completeness.

R (Refereed Journal Articles)
CR (Conference Proceedings, Refereed)

C (Conference Proceedings)
Cl (Conference Proceedings, Invited)

1. [CR/Cl] "Implementation of Distributed Networks of gUAVs with Low Power Low
Bandwidth Sensing Modalities: Some Selected Challenge Problems," H. A. Schmitt
and J. G. Riddle in the Proceedings of DASP 2001/02, July 2002.

2. [R] "An Object Detection Strategy for Uncooled Infrared Imagery," by H. A. Schmitt,
J. G. Riddle, T. M. Brucks, R. R. Coifmnan and I. Cohen, J. Modem Optics, 50, no. 9,
2003.

3. [C] "Advances in ATR Technology for Millimeter Wave Real Beam Target
Identification," D. E. Waagen, M. L. Cassabaum, H. A. Schmitt and J. G. Riddle,
ATR Science, Technology and Transition Symposium on Tomorrow's Technology for
Homeland Defense: Using A TR to Identify, Dismantle, Disrupt and Punish Terrorists
Before They Strike, October 2002.

4. [C] "Quantum Image Processing," R. D. Rosenwald, D. Meyer and H. A. Schmitt,
2003 Meeting of the MSS Specialty Group on Passive Sensors, 24-28 February 2003.

5. [C] "Adaptive FPA Using Photonic Band Gap Materials," D. J. Garrood, N. Shah and
H. A. Schmitt, 2003 Meeting of the MSS Specialty Group on Passive Sensors, 24-28
February 2003.

6. [C] "Unsupervised Support Vector Machine Optimization via Margin Distribution
Analysis," D. E. Waagen, H. A. Schmitt, M. L. Cassabaum and B. Pollock, Aerosense
SPIE, Orlando, FL, 21-25 April 2003.

7. [C] "Asymptotic Performance of ATR in Infrared Images," C. Ceritoglu, D. Bitouk,
M. I. Miller, H. A. Schmitt, Aerosense SPIE, Orlando, FL, 21-25 April 2003.

8. [C] "Adaptive Focal Plane Array," D.G. Garrood, N. N. Shah and H. A. Schmitt,
RMS EOSTN Conference, 20-22 May 2003, Dallas, TX (Best paper award in the
New and Innovative Technology Category).

9. [CR/CI] D. E. Waagen, M. L. Cassabaum, C. Scott and H. A. Schmitt, "Wavelet
Basis Selection: Statistically Diverse Wavelet Bases for Multi-Class Discrimination,"
FUSION 2003 the 6th International Conference of Information Fusion, 8-11 July
2003.

10. [CI] "A Combined Particle/Kalman Filter for Improved Tracking of Beam Aspect
Targets", D. A. Zaugg, D. E. Waagen and H. A. Schmitt, Special Session on
Applications of Particle Filters in Signal Processing, 2003 IEEE Statistical Signal
Processing Workshop, 28 September-1 October 2003.

11. [CR] "Simulated Bearings-Only EKF, Multi-Hypothesis EKF, and Particle Filter
Performance with a Comparison to AT3 and HARM Data," D. A. Zaugg, A. A.
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Samuel, D. E. Waagen, and H. A. Schmitt, The 12th Annual Workshop on Adaptive
Sensor Array Processing, MIT Lincoln Laboratory, 16 - 18 March, 2004.

12. [C] "A Bearings-only Tracking Performance Comparison Using Simulated Particle
and Multi-hypothesis Kalman Filters, and AT3 and HARM Data," D. A. Zaugg, A. A.
Samuel, D. E. Waagen, and H. A. Schmitt, MSS Passive Sensors, Tucson, 22-26
March 2004.

13. [C] "Unsupervised Optimization of Support Vector Machine Parameters," M.
Cassabaum, D. Waagen, J. Rodriguez and H. A. Schmitt, Defense and Security
Symposium, Orlando, 2004.

14. [C] "A Comparison of Particle Filters and Multiple Hypothesis Extended Kalman
Filters for Bearings-Only Tracking of Maneuvering Targets," D. Zaugg, D. Waagen,
A. Samuel and H. A. Schmitt, Defense and Security Symposium, Orlando, 2004.

15. [C] "Incremental-adaptive support vector machine learning," D. Waagen, H. A.
Schmitt and M. Palaniswam, Defense and Security Symposium, Orlando, 2004.

16. [CR] "Cognitive Nanoprobes: The Geometry of Processing and Sensing," H. A.
Schmitt, et al., 5th Asian Control Conference, Melbourne, Australia, 2004, accepted.

17. [CR] "Applications of Quantum Algorithms to Partially Observable Markov Decision
Processes," R. D. Rosenwald, D. Meyer and H. A. Schmitt, 5th Asian Control
Conference, Melbourne, Australia, 2004, accepted.

18. [CR/CI] "Unsupervised Optimization of Support Vector Machine Parameters," M.
Cassabaum, D. Waagen, H. A. Schmitt, Defense Applications of Signal Processing,
1-5 November 2004, accepted.

19. [CI] "Sensor Scheduling Approaches for SWARMS and Ballistic Missile Defense,"
C. 0. Savage, W. Moran, D. E. Waagen and H. A. Schmitt, Thirty-Eighth Annual
Asilomar Conference on Signals, Systems, and Computers, Special session on "Signal
Processing for Agile Sensors, Pacific Grove, CA, 7-10 November 2004, accepted.

20. [CI] "Computational Origami for Sensor Configuration and Control," H. A. Schmitt,
D. E. Waagen, I. Streinu and G. Barbastathis, Thirty-Eighth Annual Asilomar
Conference on Signals, Systems, and Computers, Special session on "Signal
Processing for Agile Sensors, Pacific Grove, CA, 7-10 November 2004, accepted.

21. [C] "Novel Bi-Phase Waveform for Next Generation Radar", V. Adams and W.
Dwelly, Raytheon 2003 RF Symposium, FL, May 2003.

22. [C] "Transmit Waveforms as part of the Integrated Signal Processing", V. Adams and
W. Dwelly, Raytheon 2003 Processing Technology Symposium, CA, Sept 2003

23. [C] "Three Novel Sensing Transmit Waveforms and Cognitive Processing Ka Band
Radar", V. Adams and W. Dwelly, Raytheon RF Symposium, MA, May 2004.

24. [C] "Simple & Low Cost Complex Waveforms Generation and Targets Simulation
for Ka-Band Radar Tests", V. Adams and W. Dwelly, Raytheon RF Symposium,
MA, May 2004.

25. [C] "New Radar Adaptive Transmit Waveform and Cyclic Processing", V. Adams
and W. Dwelly, Raytheon RF Symposium, MA, May 2004.
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5. New Discoveries, Inventions or Patent Disclosures:
System and Method for Tracking Beam-Aspect Targets with Combined Kalman and
Particle Filters, D. A. Zaugg, A. A. Samuel, D. E. Waagen and H. A. Schmitt

The following patent application was presented to the Raytheon Patent Committee. The
Committee has elected to defer processing of the patent application and has requested
further technical and programmatic information.
Adaptive Waveform and Cyclic or Permuted Processing, P. Barbano, D. Healy, V.
Adams and W. Dwelly

6. Interactions/Transitions:

6.1. Meetings

1. Unimodular Sequences Workshop, University of Maryland, June 2003.
2. Raytheon personnel have given ISP overview briefings to Customers on over fifty

occasions. Audiences have included military and civilian personnel from
AFRIJRome, AFRL/Eglin, AFRL/Wright-Patterson, NSWC/China Lake, US
Army Fort Huachuca, Special Operations Forces and the Border Patrol, as well as
Customers for a number of proprietary programs.

6.2. Consultative and Advisory Functions

No consultative or advisory services were provided during this period of performance.

6.3 Honors/Awards:

No honors or awards were received during this period of performance.
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